

SSiimmpplleeLLPPRR

33..55
License Plate Recognition Toolkit

 SimpleLPR 3.5 License Plate Recognition Toolkit 1 of 29

© Copyright 2009 Warelogic

 SimpleLPR 3.5 License Plate Recognition Toolkit 2 of 29

Version History

Doc. version Prod. version Date Description

1.0 2.0 28-Nov-2009 First version of this document

1.1 2.1 22-May-2011 Version 2.1of SimpleLPR

1.2 2.2 1-July-2011 Version 2.2 of SimpleLPR

1.3 2.2.4.0 29-Oct-2011 Version 2.2.4.0 of SimpleLPR

1.4 2.2.5.0 29-Nov-2011 Version 2.2.5.0 of SimpleLPR

1.5 2.3.0.1 19-July-2012 Version 2.3.0.1 of SimpleLPR

1.6 2.4.0.1 2-July-2014 Version 2.4.0.1 of SimpleLPR

2.0 3.0.0.0 24-April-2018 Version 3.0.0.0 of SimpleLPR

2.1 3.0.0.2 8-May-2018 Version 3.0.0.2 of SimpleLPR

2.2 3.0.5.0 26-July-2018 Version 3.0.5.0 of SimpleLPR

2.3 3.1.0.0 2-May-202019 Version 3.1.0.0 of SimpleLPR

2.4 3.2.0.0 27-June-2019 Version 3.2.0.0 of SimpleLPR

2.5 3.3.0.0 8-Oct-2020 Version 3.3.0.0 of SimpleLPR

2.6 3.4.0.0 28-March-2021 Version 3.4.0.0 of SimpleLPR

2.7 3.5.0.0 17-Nov-2022 Version 3.5.0.0 of SimpleLPR

2.8 3.5.1.0 3-Jan-2023 Version 3.5.1.0 of SimpleLPR

 SimpleLPR 3.5 License Plate Recognition Toolkit 3 of 29

Liability Disclaimer

Warelogic assumes no responsibility for any errors that may appear in this document nor

does it make expressed or implied warranty of any kind with regard to this material,

including, but not limited to, the implied warranties of merchantability and fitness for a

particular purpose.

To allow for design and specification improvements, the information in this document is

subject to change at any time, without notice. Reproduction of this document or portions

thereof without prior written approval of Warelogic is prohibited.

Warelogic shall not be liable for incidental or consequential damages in connection with, or

arising out of the furnishing, performance, or use of this document and the program material

that it describes.

Microsoft, MS, MSN, ActiveX, Windows, Windows NT, Visual Basic, Visual C++, and the
Windows logo are either registered trademarks or trademarks of Microsoft Corporation in

the United States and/or other countries. Microsoft products are licensed to OEMs by

Microsoft Licensing, Inc., a wholly owned subsidiary of Microsoft Corporation.

All other product, brand, or trade names used in this publication are the trademarks or

registered trademarks of their respective trademark owners.

 SimpleLPR 3.5 License Plate Recognition Toolkit 4 of 29

Table of Contents

1 Introduction ... 6

2 Supported Countries and Limitations .. 7

3 Prerequisites, Installation and Deployment .. 8

3.1 Prerequisites ... 8

3.2 Deployment .. 8

4 License Plate Recognition with SimpleLPR 3 ... 9

4.1 SimpleLPR 3 Instantiation ... 9

Native C++ Applications .. 9

.NET Applications .. 10

4.2 Engine Configuration .. 10

Native C++ Applications .. 11

.NET Applications .. 11

4.3 License Plate Recognition .. 11

Native C++ Applications .. 12

.NET Applications .. 13

4.4 Considerations on Error Handling and Resource Management 14

Native C++ Applications .. 14

.NET Applications .. 14

5 C++ Interface Reference .. 15

5.1 Functions ... 15

5.1.1 Setup .. 15

5.2 Structures ... 15

5.2.1 SIMPLELPR_Engine_Setup_Parms .. 15

5.2.2 Point ... 16

5.2.3 Rect .. 16

5.2.4 Quad .. 16

5.2.5 Element ... 16

5.2.6 VersionNumber .. 17

5.3 Interfaces ... 17

5.3.1 IReferenceCounted .. 17

5.3.2 IErrorInfo .. 18

5.3.3 ICountryMatch .. 18

5.3.4 ICandidate .. 19

 SimpleLPR 3.5 License Plate Recognition Toolkit 5 of 29

5.3.5 ICandidates ... 20

5.3.6 IProcessor... 21

5.3.7 ISimpleLPR .. 24

6 .NET Interface Reference ... 28

 SimpleLPR 3.5 License Plate Recognition Toolkit 6 of 29

1 Introduction

At present, there are many license plate recognition (LPR) solutions in the market, designed

to work in areas such as traffic control and monitoring, parking access, vehicle management,

detection of security violations, and so forth. The best LPR engines support many countries,

all license plate layouts, charsets, and some of them feature a 98% recognition rate or

greater at recognition speeds of less than 10 ms per frame. Not surprisingly, this superior

performance generally comes at a price; the best engines can cost thousands of dollars per

runtime license.

On the other hand, there are consumer-oriented applications that can benefit from LPR but

the cost of a high-end LPR engine is too high for their segment. This is where SimpleLPR 3

comes in. SimpleLPR 3 is a royalty-free low-end LPR engine directed to price sensitive

applications that can cost an order of magnitude less than its high end counterparts, at the

expense of a limited number of supported countries and lower accuracy; the typical

recognition rate is about 90%, although as new releases appear this number is expected to

improve. For applications that can trade some recognition accuracy for an affordable price
SimpleLPR 3 is an option that should be considered.

From a developer’s perspective, SimpleLPR 3 main design goal is integration and deployment

simplicity. Hence, SimpleLPR 3 runtime can be redistributed along with third-party

applications by just x-copying a few DLL files that do not require COM registration.

SimpleLPR 3 provides a C/C++ interface for native applications, and it also exports a .NET

object model that can be directly used from VB or C#. The current version supports more

than 80 countries. It can read 24-bit RGB or 8-bit grayscale images from JPEG, TIFF, BMP or

PNG files, as well as from a memory buffer.

This guide contains both the product description and documentation for developers. In the

following sections, all required information on how to integrate SimpleLPR 3 into a third-

party application is provided.

 SimpleLPR 3.5 License Plate Recognition Toolkit 7 of 29

2 Supported Countries and Limitations

The current version can read license plates from the supported countries, provided that

they are in good condition; namely, the license plates should be crisp, readable, without

occlusion, bumps, or scratches. In addition, images supplied to the SimpleLPR 3 engine should

portray the license plate as viewed from a frontal angle, and the height of the license plate

characters should be 20 pixels or taller.

Irrespective of complying with the above constraints, in general not all valid license plates

from a specific country can be recognized. The level of support varies from country to

country (supported countries are listed in http://warelogic.com). Readable license plates for

which a country template does not exist are returned as unmatched text.

https://warelogic.com/

 SimpleLPR 3.5 License Plate Recognition Toolkit 8 of 29

3 Prerequisites, Installation and Deployment

3.1 Prerequisites

SimpleLPR 3 requires a computer running a Windows 10 or newer operating system, the

MSXML 6.0 XML parser, and the Microsoft Visual C++ Redistributable for Visual Studio

2022 package installed on the system.

Any 5 year old or newer computer kept regularly updated with Microsoft’s patches and

service packs should already meet the above requirements. Nevertheless, if required the

above software prerequisites can be downloaded from Microsoft.

1. MSXML 6.0 can be installed from

http://www.microsoft.com/downloads/details.aspx?FamilyID=D21C292C-368B-4CE1-

9DAB-3E9827B70604&displaylang=en

2. The Visual Studio 2022 Redistributable can be downloaded from

https://www.visualstudio.com/downloads/Installation

The SimpleLPR 3 Toolkit is shipped in a MSI installer. It creates the SDK file structure and

automatically takes care of the dependencies: if needed it will install the Visual Studio 2022

C++ runtime. It will also verify that MSXML 6.0 is installed and check for AVX extensions,

prompting the user if any of them are not available.

Upon installation SimpleLPR 3 operates in evaluation mode, which lasts for 60 days. Once

the evaluation period terminates SimpleLPR 3 will stop working, unless a valid product key is

provided.

3.2 Deployment

SimpleLPR 3 can be deployed by simply copying the contents of the bin directory in the SDK

to the same folder as the application executable. If the target application is using the .NET
classes exposed by the SimpleLPR3.dll assembly it is important to copy also the contents

of the 'runtimes' folder. Two considerations to be borne in mind are

1. SimpleLPR 3 cannot operate in evaluation mode when redistributed. The application

has to supply a product key.

2. The installer of the third party application must ensure that all prerequisites are met.

http://www.microsoft.com/downloads/details.aspx?FamilyID=D21C292C-368B-4CE1-9DAB-3E9827B70604&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=D21C292C-368B-4CE1-9DAB-3E9827B70604&displaylang=en
https://www.visualstudio.com/downloads/

 SimpleLPR 3.5 License Plate Recognition Toolkit 9 of 29

4 License Plate Recognition with SimpleLPR 3

This section describes the major steps to integrate SimpleLPR 3 into an application. In each

stage both C++ and .NET flavors are examined individually. .NET sample code is presented

in C#.

4.1 SimpleLPR 3 Instantiation

This step includes the tasks of loading SimpleLPR3 into the application process space and

creating an instance of the SimpleLPR engine. In the case of a CUDA compatible GPU being

available in the system, it can be selected as a parameter of the engine creation call and

latter used for off-loading some computation-intensive tasks. When the GPU mode is

selected, the user can independently enable the GPU for image processing tasks and/or text

candidate classification. Moreover, since some of the image processing algorithms used in

SimpleLPR are memory consuming, an additional parameter allows the user to specify the

maximum number of concurrent image processing operations.

Native C++ Applications

For native C++ applications, a native DLL is provided with the name SimpleLPR3_native.dll,
which exports a public function Setup that works as a factory method of ISimpleLPR objects.

The prototype of the Setup function is defined in include/SimpleLPR.h

ISimpleLPR * _stdcall Setup(const SIMPLELPR_Engine_Setup_Parms &rcParms) throw ();

Although a .lib file is provided for SimpleLPR3_native.dll, it is advised to perform the binding

programmatically using either the LoadLibrary or LoadLibraryEx calls. Once a pointer to the

Setup function is acquired, it can be used to create an instance of the SimpleLPR 3 engine,

encapsulated in the ISimpleLPR interface. The following code snippet illustrates this.

// Load the SimpleLPR dll

HMODULE hLib = LoadLibraryEx(L"SimpleLPR3_native.dll", NULL, 0);

if (hLib == NULL)

 … \\ Handle error condition

// Get the entry point to the Setup function

SimpleLPRSetupFunc pfnSetup = (SimpleLPRSetupFunc)::GetProcAddress(hLib, "Setup");

if (pfnSetup == 0)

… \\ Handle error condition

SIMPLELPR_Engine_Setup_Parms setupParms;

setupParms.cudaDeviceId = -1; // Use CPU.

setupParms.enableImageProcessingWithGPU= 0;

setupParms.enableClassificationWithGPU= 0;

setupParms.maxConcurrentImageProcessingOps= 0; // Use default settings.

setupParms.guard = SIMPLELPR_SETUP_PARMS_GUARD; // Used to detect possible

 // version mismatches.

 SimpleLPR 3.5 License Plate Recognition Toolkit 10 of 29

// Create an instance of the SimpleLPR engine

ISimpleLPR *pLPR = (*pfnSetup)(setupParms);

if (pLPR == NULL)

… \\ Handle error condition

… \\ Do your stuff

pLPR->release(); // Delete engine

 .NET Applications

A .NET assembly with the name SimpleLPR3.dll is provided, which dispatches user calls to

SimpleLPR3_native.dll. Once added to the project as an assembly reference, an instance of the

SimpleLPR 3 engine can be created using the Setup static factory method in the SimpleLPR

class.

EngineSetupParms setupP;

setupP.cudaDeviceId = -1; // Select CPU

engP.enableImageProcessingWithGPU = false;

engP.enableClassificationWithGPU = false;

engP.maxConcurrentImageProcessingOps = 0; // Use default settings.

ISimpleLPR lpr = SimpleLPR.Setup(setupP);

4.2 Engine Configuration

Firstly, a valid product key must be provided if SimpleLPR 3 is not to be used in evaluation

mode. The product key can be supplied either from a file or from a memory buffer. As it

contains personal data from the purchaser in readable form, the second method is

preferred.

Then, the user must decide which countries are to be enabled as well as their relative

weights. These weights are used to break ties in the event that two or more candidates

from different countries are equally feasible. The SimpleLPR 3 engine exports methods to

assign each country a weight equal to or greater than 0. Setting a weight equal to 0 disables

a country. Subsequently, those weights are later normalized to the [0...1] range. During

license plate recognition, it is possible that the discovered groups of text and numbers

match the syntax checking rules of more than one country. The ‘goodness’ index of each

country's match is multiplied by the normalized country weight, and the result is used to

return an ordered list of the possible country matches for each license plate candidate.

The samples below show how to set the product key and configure country weights in each

development platform.

 SimpleLPR 3.5 License Plate Recognition Toolkit 11 of 29

Native C++ Applications

// Set the product key

bool bOk = pLPR->productKey_set(L”productkey.xml”);

if (! bOk)

… \\ Handle error condition

// Enable Germany, Spain and the United Kingdom

bOK = pLPR->countryWeight_set(L”Germany”, 1.f)

if (! bOk)

… \\ Handle error condition

bOK = pLPR->countryWeight_set(L”Spain”, 1.f)

if (! bOk)

… \\ Handle error condition

bOK = pLPR->countryWeight_set(L”UK-GreatBritain”, 1.f)

if (! bOk)

… \\ Handle error condition

// Apply changes

bOK = pLPR->realizeCountryWeights();

if (! bOk)

… \\ Handle error condition

.NET Applications

// Set the product key

lpr.set_productKey(“productkey.xml”);

// Enable Germany, Spain and the United Kingdom

lpr.set_countryWeight(“Germany”, 1.0f);

lpr.set_countryWeight(“Spain”, 1.0f);

lpr.set_countryWeight(“UK-GreatBritain”, 1.0f);

// Apply changes

lpr.realizeCountryWeights();

4.3 License Plate Recognition

Once the SimpleLPR 3 engine has been properly configured, the remaining step is to create

an instance of an IProcessor object to perform license plate recognition. Since IProcessor is

not thread-safe, each working thread involved in LPR should manage its own instance of

IProcessor.

An IProcessor can read and analyze images from a file in either RGB or grayscale JPEG, TIFF,
PNG, and BMP formats or, alternatively, it can process images directly from a memory

buffer. In the later case the image must be either RGB 24-bit or grayscale 8-bit. The output of

the ANPR methods is a list of license plate candidate objects. Each plate candidate object, in

turn, consists of a list of possible country match objects, being the last entry in the list the

element corresponding to the raw text object. Country match objects hold the license plate

text in Unicode string form, the candidate confidence score, and the bounding box and

confidence value of all individual elements in the license plate.

The license plate text is formatted according to the rules of each specific country; thus

spaces or hyphens can be added to separate groups of text and numbers. The returned

 SimpleLPR 3.5 License Plate Recognition Toolkit 12 of 29

glyph confidence score ranges from 0 to 1 and corresponds to the direct output of the

OCR classifier. Since it can either underestimate or overestimate the actual probability of

the result being correct, care should be taken when setting thresholds to discard weak

candidates. The rule of thumb is that very low values correspond to unreliable detections,

whereas values close to one imply a safer candidate. Lastly, the confidence score of the

country match is computed as the product of the confidences of its glyphs weighted by a

factor derived from the similarity between the expected inter-glyph separations and the

actual ones present in the candidate.

Optionally, IProcessor can be configured to estimate the probability that the detected

candidates actually correspond to license plates. When this mode is enabled, the confidence

that the detected text belongs to a license plate, alongside the four vertices of the enclosing

quadrilateral of the license plate, is returned in the ICandidate object.

Native C++ Applications

// Create processor

IProcessor *pProc = pLPR->createProcessor();

if (pProc == NULL)

{

 // Handle error condition

 ...

}

// Process source file

ICandidates *pCds = pProc->analyze(L"vehicle.jpg");

if (pCds == NULL)

{

 // Handle error condition

 ...

}

std::wcout << pCds->numCandidates_get() << L" license plate candidates found:" << std::endl;

// Iterate over all candidates

for (_SIZE_T i = 0; nErr == 0 && i < pCds->numCandidates_get(); ++i)

{

 ICandidate *pCd = pCds->candidate_get(i);

 std::wcout << L"***********" << std::endl;

 std::wcout << L"Candidate " << i + 1 << std::endl;

 struct SIMPLELPR_Rect candBB;

 pCd->boundingBox_get(candBB);

 std::wcout << L"Light background " << pCd->brightBackground_get();

 std::wcout << L", left: " << candBB.left << L", top: " << candBB.top;

 std::wcout << L", width: " << candBB.width << L", height: " << candBB.height;

 std::wcout << std::endl;

 // Iterate over all country matches.

 for (_SIZE_T j = 0; j < pCd->numCountryMatches_get(); ++j)

 {

 ICountryMatch *pMatch = pCd->countryMatch_get(j);

 std::wcout << L"-----------" << std::endl;

 std::wcout << L"Match " << j + 1 << std::endl;

 SimpleLPR 3.5 License Plate Recognition Toolkit 13 of 29

 std::wcout << L"Text: " << pMatch->text_get() << L", country: " << pMatch->country_get();

 std::wcout << L", ISO: " << pMatch->countryISO_get();

 std::wceout << L", confidence: " << pMatch->confidence_get();

 std::wcout << std::endl;

 std::wcout << L"Elements: " << std::endl;

 // Iterate over all elements

 for (_SIZE_T k = 0; k < pMatch->numElements_get(); ++k)

 {

 Element e;

 pMatch->element_get(k, e);

 std::wcout << L"Glyph: " << e.glyph << L", confidence: " << e.fConfidence;

 std::wcout << L", left: " << e.boundingBox.left << L", top: " << e.boundingBox.top;

 std::wcout << L", width: " << e.boundingBox.width;

 std::wceout << L", height: " << e.boundingBox.height;

 std::wcout << std::endl;

 }

 pMatch->release();

 }

 pCd->release();

}

// Cleanup

if (pCds != NULL)

 pCds->release();

if (pProc != NULL)

 pProc->release();

.NET Applications

// Create Processor

IProcessor proc = lpr.createProcessor();

// Process source file

List<Candidate> cds = proc.analyze(“vehicle.jpg”);

Console.WriteLine("{0} license plate candidates found:", cds.Count);

// Iterate over all candidates

foreach (Candidate cd in cds)

{

 Console.WriteLine("***********");

 Console.WriteLine("Light background: {0}, left: {1}, top: {2}, width: {3}, height: {4}",

 cd.brightBackground, cd.bbox.Left, cd.bbox.Top, cd.bbox.Width, cd.bbox.Height);

 Console.WriteLine("Matches:");

 // Iterate over all country matches

 foreach (CountryMatch match in cd.matches)

 {

 Console.WriteLine("-----------");

 Console.WriteLine("Text: {0}, country: {1}, ISO: {2}, confidence: {3}",

 match.text, match.country, match.countryISO, match.confidence);

 Console.WriteLine("Elements:");

 foreach (Element e in match.elements)

 {

 Console.WriteLine(" Glyph: {0}, confidence: {1}," +

 SimpleLPR 3.5 License Plate Recognition Toolkit 14 of 29

 "left: {2}, top: {3}, width: {4}, height: {5}",

 e.glyph, e.confidence, e.bbox.Left,

 e.bbox.Top, e.bbox.Width, e.bbox.Height);

 }

 }

}

4.4 Considerations on Error Handling and Resource

Management

For the sake of simplicity, the subject of error handling has been deliberately omitted in the

sample code above. Furthermore, the reference counting scheme implemented in the C++

interface deserves some discussion.

Native C++ Applications

Exceptions are a convenient mechanism for dealing with error conditions in C++. However,

their implementation is compiler vendor dependant and thus they are not appropriate for a

public interface exported from a DLL. For this reason, SimpleLPR 3 relies on methods
returning error codes combined with a per-thread error state. Every method in the C++

interface returns either a Boolean (true meaning success) or a NULL value in case that the

method is expected to return a pointer.

Once an error condition has been determined, further error information can be queried by

means of the lastError_get() method. Each thread keeps its own copy of the last_error

variable. The following code snippet shows how the error state can be obtained.

SimpleLPR3_Native::IErrorInfo *pErr = pLPR->lastError_get();

if (pErr != NULL)

{

 std::wcerr << L"Error occurred. Error code: " << pErr->errorCode;

 std::wcerr << L", description: " << pErr->description << std::endl;

 pErr->release(); // Free object

}

On the topic of resource management, the standard way of de-allocating objects in C++ is

using the delete operator. On the other hand, the golden rule of any DLL returning C++

objects is that resources must be allocated and de-allocated inside the DLL. A way to

accomplish it is by making objects delete themselves. The reference counting idiom does

this; each object keeps track of how many references point to it. When this counter reaches

0, the object deletes itself. Thus, all objects exported in the C++ interface derive from

IReferenceCounted. This interface has two methods, addRef, which increments objects
reference counter by one, and release, which decrements it. All objects returned by the

SimpleLPR 3 factory methods have their reference counter set to 1, and calling their release

method actually destroys them.

.NET Applications

As usual, .NET makes life easier for developers. Error conditions are dealt with the use

exceptions, which is the standard way in .NET. Likewise, resource management is not an

issue here as the garbage collector takes care of this subject.

 SimpleLPR 3.5 License Plate Recognition Toolkit 15 of 29

5 C++ Interface Reference

The file include\SimpleLPR.h contains all class declarations and function prototypes described

in this section. All members are declared under the SimpleLPR3_Native namespace.

5.1 Functions

5.1.1 Setup

ISimpleLPR * Setup(const SIMPLELPR_Engine_Setup_Parms &rcParms) throw ();

Description: Factory method of ISimpleLPR objects.

Parameters

 rcParms: A reference to a SIMPLELPR_Engine_Setup_Parms struct.

Returns: A pointer to a ISimpleLPR object. The returned ISimpleLPR object must be

 de-allocated by calling its release method.

Remarks: It is advised to load SimpleLPR3_native.dll dynamically.

5.2 Structures

5.2.1 SIMPLELPR_Engine_Setup_Parms

Parameters for engine creation.

struct SIMPLELPR_Engine_Setup_Parms

{

 __int32 cudaDeviceId;

 SIMPLELPR_BOOL enableImageProcessingWithGPU;

 SIMPLELPR_BOOL enableClassificationWithGPU;

 SIMPLELPR_SIZE_T maxConcurrentImageProcessingOps;

 unsigned __int32 guard;

};

Members
cudaDeviceId: Valid CUDA device identifier, or -1 for CPU only mode.

enableImageProcessingWithGPU: In case this value is different than 0 and a valid CUDA

 device identifier is provided then use the GPU for image

 processing tasks.

enableClassificationWithGPU: In case this value is different than 0 and a valid CUDA

 device identifier is provided then use the GPU for text

 candidate classification.

maxConcurrentImageProcessingOps: Maximum number of concurrent image processing

 operations. The recommended values are 1 or 2 when

 using the CPU for image processing tasks, and 4 or

 more when employing a GPU. Setting this parameter to

 0 is equivalent to selecting the recommended values for

 each case.

guard: Used to detect version conflicts.

 Must be set to SIMPLELPR_SETUP_PARMS_GUARD.

 SimpleLPR 3.5 License Plate Recognition Toolkit 16 of 29

5.2.2 Point

This structure encapsulates a point.

struct Rect

{

 __int32 x;

 __int32 y;

};

Members
x Horizontal coordinate.

y Vertical coordinate.

5.2.3 Rect

This structure represents a rectangle.

struct Rect

{

 __int32 left;

 __int32 top;

 __int32 width;

 __int32 height;

};

Members
left Leftmost coordinate of the rectangle.

top Topmost coordinate of the rectangle.

width Rectangle width.

height Rectangle height.

5.2.4 Quad

Represents the four vertices of a quadrilateral.

struct Quad

{

 Point vertices[4];

};

Members
vertices The four vertices of the quadrilateral in counterclockwise order.

5.2.5 Element

Holds the LPR results of an individual character in a license plate.

struct Element

{

 wchar_t glyph;

 _REAL_T fConfidence

 Rect boundingBox;

 SimpleLPR 3.5 License Plate Recognition Toolkit 17 of 29

};

Members
glyph Unicode representation of the character.

fConfidence 'Goodness' of the recognition. Its range is 0 to 1 and can be used to rank

candidates although it should not be regarded as a probability. In general, a 2x

goodness value is not twice as good as x. See the section on LPR for more

detailed information on confidence values.

boundingBox Bounding rectangle of the character, in pixel coordinates.

5.2.6 VersionNumber

This structure holds the four numbers that comprise the SimpleLPR version number.

struct Rect

{

 unsigned __int32 A;

 unsigned __int32 B;

 unsigned __int32 C;

 unsigned __int32 D;

};

Members
A First element of the of SimpleLPR_Native3.dll product number.

B Second element of the of SimpleLPR_Native3.dll product number.

C Third element of the of SimpleLPR_Native3.dll product number.

D Fourth element of the of SimpleLPR_Native3.dll product number.

5.3 Interfaces

5.3.1 IReferenceCounted

This interface constitutes the base for all interfaces. It manages object life cycles by means of

reference counting. All factory methods in this library return pointers to objects with their

reference count set to 1 or more.

It is advisable to call the addRef method every time a pointer alias is created. Likewise, the

release method should be called before an object pointer goes out of scope. When an object

reference count reaches zero the object is destroyed.

struct IReferenceCounted

{

 virtual void addRef(void) throw () = 0;

 virtual void release(void) throw () = 0;

};

Methods

 SimpleLPR 3.5 License Plate Recognition Toolkit 18 of 29

virtual void addRef(void) throw () = 0;

Description: Increments an object reference count by one.

virtual void release(void) throw () = 0;

Description: Decrements an object reference count by one. When it reaches 0 the object is

destroyed.

5.3.2 IErrorInfo

This class conveys an error code and a description. Every time an error occurs an IErrorInfo

object is created and kept in thread local storage (TLS). To retrieve it use the

ISimpleLPR::lastError_get method.

struct IErrorInfo : public IReferenceCounted

{

 virtual _HRESULT errorCode_get() const throw () = 0;

 virtual const wchar_t * description_get() const throw () = 0;

};

Methods

virtual _HRESULT errorCode_get() const throw () = 0;

Description: Returns a COM like HRESULT error code.

virtual const wchar_t * description_get() const throw () = 0;

Description: Returns a textual description of the error.

5.3.3 ICountryMatch

Encapsulates a country match for a license plate candidate.

struct ICountryMatch : public IReferenceCounted

{

 virtual const wchar_t *text_get() const throw () = 0;

 virtual const wchar_t *country_get() const throw () = 0;

 virtual const wchar_t *countryISO_get() const throw () = 0;

 virtual _REAL_T confidence_get() const throw () = 0;

 virtual _SIZE_T numElements_get() const throw () = 0;

 virtual bool element_get(_SIZE_T id, /*[out]*/Element &rElem) const throw () = 0;

};

Methods

 SimpleLPR 3.5 License Plate Recognition Toolkit 19 of 29

virtual const wchar_t *text_get() const throw () = 0;

Description: Returns the Unicode representation of the license plate string. Separators are

 represented as white space.

virtual const wchar_t *country_get() const throw () = 0;

Description: Returns the country code in string form.

virtual const wchar_t *countryISO_get() const throw () = 0;

Description: Returns the country ISO Alpha-2 code.

virtual _REAL_T confidence_get() const throw () = 0;

Description: Returns the overall 'goodness' of the recognition.

virtual void boundingBox_get(/*[out]*/Rect &rBB) const throw () = 0;

Description: Returns the bounding box of the text in the country match.

virtual _SIZE_T numElements_get() const throw () = 0;

Description: Number of components in the license plate..

virtual bool element_get(_SIZE_T id, /*[out]*/Element &rElem) const throw () = 0;

Description: Information about the individual chars that make up the license plate. They are

 listed in the same order as they appear in the text string. To know the physical

 layout of the license plates use the Element::bbox field.

5.3.4 ICandidate

Encapsulates a license plate candidate.

struct ICandidate : public IReferenceCounted

{

 virtual bool brightBackground_get() const throw () = 0;

 virtual void boundingBox_get(/*[out]*/ Rect &rBB) const throw () = 0;

 virtual _REAL_T plateRegionDetectionConfidence_get() const throw () = 0;

 virtual void plateRegionVertices_get(/*[out]*/Quad &rQuad) const throw () = 0;

 virtual _SIZE_T numCountryMatches_get () const throw () = 0;

 virtual ICountryMatch *countryMatch_get(_SIZE_T id) const throw () = 0;

};

 SimpleLPR 3.5 License Plate Recognition Toolkit 20 of 29

Methods

virtual bool brightBackground_get() const throw () = 0;

Description: true if the license plate features dark text on a light background. false if
otherwise.

virtual void boundingBox_get(/*[out]*/ Rect &rBB) const throw () = 0;

Description: Returns the bounding box of the text in the license plate.

virtual _REAL_T plateRegionDetectionConfidence_get() const throw () = 0;

Description: Returns the estimated probability that the candidate corresponds to a license

plate rather than incidental scene text.

Remarks: Returns -1 in case the plate region detection and extraction feature has not been

previously enabled in IProcessor.

virtual void plateRegionVertices_get(/*[out]*/Quad &rQuad) const throw () = 0;

Description: Returns the four vertices of the detected license plate region in case that the

license plate region confidence is greater than zero, otherwise all point coordinates are set

to -1.

virtual _SIZE_T numCountryMatches_get () const throw () = 0;

Description: Number of country matches for the candidate.

virtual ICountryMatch *countryMatch_get(_SIZE_T id) const throw () = 0;

Description: Returns a country match object given its index.
Remarks: The returned ICountryMatch object must be de-allocated by calling its release

method.

5.3.5 ICandidates

Encapsulates a collection of license plate candidates.

struct ICandidates : public IReferenceCounted

{

 virtual _SIZE_T numCandidates_get() const throw () = 0;

 virtual ICandidate *candidate_get(_SIZE_T id) const throw () = 0;

};

Methods

virtual _SIZE_T numCandidates_get() const throw () = 0;

 SimpleLPR 3.5 License Plate Recognition Toolkit 21 of 29

Description: Returns the number of elements in the collection.

virtual ICandidate *candidate_get(_SIZE_T id) const throw () = 0;

Description: Returns a candidate object given its index.

Returns: A pointer to the selected candidate object.

Remarks: The returned ICandidate object must be de-allocated by calling its release method.

5.3.6 IProcessor

Encapsulates the LPR functionality of SimpleLPR 3. This class is not multi-threaded and,

therefore, each thread should use a dedicated IProcessor instance.

struct IProcessor : public IReferenceCounted

{

 virtual _REAL_T contrastSensitivityFactor_get() const throw () = 0;

 virtual bool contrastSensitivityFactor_set(_REAL_T fFactor) throw () = 0;

 virtual bool plateRegionDetectionEnabled_get() const throw () = 0;

 virtual void plateRegionDetectionEnabled_set(bool bEnabled) throw () = 0;

virtual bool cropToPlateRegionEnabled_get() const throw () = 0;

 virtual void cropToPlateRegionEnabled_set(bool bEnabled) throw () = 0;

virtual ICandidates *analyze_C3(const void *pcvImgData,

 _SIZE_T widthStep,

 _SIZE_T width,

 _SIZE_T height,

 _REAL_T fWeight0,

 _REAL_T fWeight1,

 _REAL_T fWeight2) throw () = 0;

virtual ICandidates *analyze(const void *pcvImgData,

 _SIZE_T widthStep,

 _SIZE_T width,

 _SIZE_T height) throw () = 0;

virtual ICandidates *analyze(const void *pcvEncImgData,

 SIZE_T_ cEncImgSize) throw () = 0;

 virtual ICandidates *analyze(const wchar_t * pcwsImgPath) throw () = 0;

};

Methods

virtual _REAL_T contrastSensitivityFactor_get() const throw () = 0;

Description: Returns the current contrast sensitivity factor (CSF) parameter for the

IProcessor. The CSF must lie in the interval [0..1]. Low CSF values can improve the

recognition accuracy when there is noise in the image or there are shadows on the license

plates. Otherwise higher CSF values are recommended.

 SimpleLPR 3.5 License Plate Recognition Toolkit 22 of 29

virtual bool contrastSensitivityFactor_set(_REAL_T fFactor) throw () = 0;

Description: Sets the contrast sensitivity factor (CSF) parameter for the IProcessor. The CSF

must lie in the interval [0..1]. Low CSF values can improve the recognition accuracy when

there is noise in the image or there are shadows on the license plates. Otherwise higher

CSF values are recommended.

Returns: true if the method succeeded, false otherwise. In the later case use

 ISimpleLPR::lastError_get to obtain the error information.

virtual bool plateRegionDetectionEnabled_get() const throw () = 0;

Description: Returns true if the plate region detection and extraction functionality is enabled,

and false otherwise.

virtual void plateRegionDetectionEnabled_set(bool bEnabled) throw () = 0;

Description: Enables/disables the plate region detection and extraction functionality.

virtual bool cropToPlateRegionEnabled_get() const throw () = 0;

Description: Tells whether results are going to be cropped to the detected plate region or

not. Returns true if the crop results to the plate region functionality is enabled, and false

otherwise.

virtual void cropToPlateRegionEnabled_set(bool bEnabled) throw () = 0;

Description: Enables/disables the crop results to the plate region functionality.

virtual ICandidates *analyze_C3(const void *pcvImgData,

 _SIZE_T widthStep,

 _SIZE_T width,

 _SIZE_T height,

 _REAL_T fWeight0,

 _REAL_T fWeight1,

 _REAL_T fWeight2) throw () = 0;

Description: Looks for license plate candidates in a memory buffer containing a 3-channel 8

bit/channel color image stored in pixel order. Every pixel in the source image is

internally converted to gray scale according to the following formula:

L = fWeight0 * C0 + fWeight1 * C1 + fWeight2 * C2

For instance, to convert a RGB image to gray scale according the standard for

the NTSC CRT the value of the weights should be:

 Red: fWeight0 = 0.299

 Green: fWeight1 = 0.587

 Blue: fWeight2 = 0.114

 SimpleLPR 3.5 License Plate Recognition Toolkit 23 of 29

Parameters

 Input

 pImgData: Pointer to the first image row. The image must be a 3-channel 8 bit/channel

color image stored in pixel order and down. The top row of the image is the

first row in memory, followed by next row down.

 widthStep: Distance in bytes between starts of consecutive rows in the source image.

 width: Image width in pixels.

 height: Image height in pixels.

 fWeight0: Weight of the first channel.

 fWeight1: Weight of the second channel.

 fWeight2: Weight of the third channel.

Returns: A pointer to an ICandidates collection containing all license plate candidates. If
 something goes wrong it returns a NULL pointer, use ISimpleLPR::lastError_get to

 get the error information.

Remarks: This method is not multi-threaded. The returned ICandidates object must be

 de-allocated by calling its release method.

virtual ICandidates *analyze(const void *pcvImgData,

 _SIZE_T widthStep,

 _SIZE_T width,

 _SIZE_T height) throw () = 0;

Description: Looks for license plate candidates in a memory buffer containing an 8 bit gray

 scale image.

Parameters

 Input

 pImgData: Pointer to the first image row. The image must be 8 bit gray scale and top

 down. The top row of the image is the first row in memory, followed by the

 next row down.

 widthStep: Distance in bytes between starts of consecutive rows in the source image.

 width: Image width in pixels.

 height: Image height in pixels.

Returns: A pointer to an ICandidates collection containing all license plate candidates. If

 something goes wrong it returns a NULL pointer, use ISimpleLPR::lastError_get to

 get the error information.

Remarks: This method is not multi-threaded. The returned ICandidates object must be

 de-allocated by calling its release method.

virtual ICandidates *analyze(const void *pcvEncImgData, SIZE_T_ cEncImgSize) throw () = 0;

Description: Looks for license plate candidates in an image in a .jpg, .png, .tif or .bmp encoded

image in a buffer in memory. The images can be either 24 bit RGB or 8 bit gray scale.

Parameters
 Input

 pcvEncImgData: Pointer to the memory region containing the encoded image.

 cEncImgSize: Size in bytes of the encoded image..

 SimpleLPR 3.5 License Plate Recognition Toolkit 24 of 29

Returns: A pointer to a ICandidates collection containing all license plate candidates. If

 something goes wrong it returns a NULL pointer, use ISimpleLPR::lastError_get to

 get the error information.

Remarks: This method is not multi-threaded. The returned ICandidates object must be

 de-allocated by calling its release method.

virtual ICandidates *analyze(const wchar_t * pcwsImgPath) throw () = 0;

Description: Looks for license plate candidates in an image in a .jpg, .png, .tif or .bmp file. The

 images can be either 24 bit RGB or 8 bit gray scale.
Parameters

 Input

 pcwsImgPath: Path to a file containing a 24 bit RGB or 8 bit gray scale image.

Returns: A pointer to a ICandidates collection containing all license plate candidates. If

 something goes wrong it returns a NULL pointer, use ISimpleLPR::lastError_get to

 get the error information.

Remarks: This method is not multi-threaded. The returned ICandidates object must be

 de-allocated by calling its release method.

5.3.7 ISimpleLPR

Encapsulates the SimpleLPR 3 engine.

struct ISimpleLPR : public IReferenceCounted

{

 virtual _SIZE_T numSupportedCountries_get() const throw () = 0;

 virtual bool countryCode_get(_SIZE_T id,

 /*[out]*/const wchar_t *&rpcwsCode) const throw () = 0;

 virtual bool countryWeight_get(_SIZE_T id,

 /*[out]*/_REAL_T &rfWeight) const throw () = 0;

 virtual bool countryWeight_get(const wchar_t *id,

 /*[out]*/_REAL_T &rfWeight) const throw () = 0;

 virtual bool countryWeight_set(_SIZE_T id,

 _REAL_T fWeight) throw () = 0;

 virtual bool countryWeight_set(const wchar_t *id,

 _REAL_T fWeight) throw () = 0;

 virtual bool realizeCountryWeights() throw () = 0;

 virtual IErrorInfo *lastError_get(bool bClear = true) throw () = 0;

 virtual IProcessor *createProcessor() throw () = 0;

 virtual bool productKey_set(const wchar_t *productKeyPath) throw () = 0;

 virtual bool productKey_set(const void *key, _SIZE_T keySize) throw () = 0;

virtual bool versionNumber_get(/*[out]*/ VersionNumber &rVersion) throw () = 0;

};

Methods

virtual _SIZE_T numSupportedCountries_get() const throw () = 0;

Description: Returns the number of supported countries.

 SimpleLPR 3.5 License Plate Recognition Toolkit 25 of 29

virtual bool countryCode_get(_SIZE_T id, /*[out]*/const

 wchar_t *&rpcwsCode) const throw () = 0;

Description: Given a country index it returns its string identifier.
Parameters

 Input

 id: The country index. 0 <= id <= numSupportedCountries_get() - 1.

 Output:

 rpcwsCode:: The country Unicode string identifier..

Returns: true if the method succeeded, false otherwise. In the later case use

 ISimpleLPR::lastError_get to obtain the error information.

virtual bool countryWeight_get(_SIZE_T id,

 /*[out]*/_REAL_T &rfWeight) const throw () = 0;

Description: Given a country index it returns the relative country weight. Weights are used

to break ties when a candidate can belong to multiple countries.

Parameters

 Input

 Id: The country index. 0 <= id <= numSupportedCountries_get() - 1.

 Output

 rfWeight:: The relative weight of the country.

Returns: true if the method succeeded, false otherwise. In the later case use
 ISimpleLPR::lastError_get to obtain the error information.

virtual bool countryWeight_get(const wchar_t *id,

 /*[out]*/_REAL_T &rfWeight) const throw () = 0;

Description Given a country string identifier it returns the relative country weight. Weights

are used to break ties when a candidate can belong to multiple countries.

Parameters

 Input

 Id: The country string identifier. See countryCode_get.

 Output

 rfWeight:: The relative weight of the country.

Returns: true if the method succeeded, false otherwise. In the later case use

 ISimpleLPR::lastError_get to obtain the error information.

virtual bool countryWeight_set(_SIZE_T id,

 _REAL_T fWeight) throw () = 0;

Description: Given a country index it sets the country relative weight. Weights are used to

 break ties when a candidate can belong to multiple countries.

Parameters

 Input

 id: The country index. 0 <= id <= numSupportedCountries_get() - 1.

 fWeight:: The desired country weight. fWeight >= 0.

Returns: true if the method succeeded, false otherwise. In the later case use

 ISimpleLPR::lastError_get to obtain the error information.

 SimpleLPR 3.5 License Plate Recognition Toolkit 26 of 29

Remarks: This method is not multi-threaded. Weight must be >= 0. Use a zero weight to

 effectively disable a specific country.

virtual bool realizeCountryWeights() throw () = 0

Description: Rebuilds the internal country verification lookup tables based on which countries

 are enabled and their relative weights. Call it once you have finished configuring

 country weights.

Returns: true if the method succeeded, false otherwise. In the later case use

 ISimpleLPR::lastError_get to obtain the error information.

Remarks: This method is not multi-threaded. Depending on the countries selected this

 method can be time consuming. After this method execution all existing and new

 IProcessor instances will start using the new weights. Avoid calling this method

 when another thread is executing IProcessor::analyze.

virtual IErrorInfo *lastError_get(bool bClear = true) throw () = 0;

Description Returns an IErrorInfo object that describes the latest error occurred.

Parameters

 Input

 bClear: If true the error state will be cleared after this call.

Returns: An IErrorInfo object that describes the latest error or NULL if no error has

 occurred since application startup or the last call to lastError_get with bClear

 set to true.

Remarks: This method is multi-threaded. In particular each thread maintains a TLS slot with

 error state so threads can be independent from each other.

virtual IProcessor *createProcessor() throw () = 0;

Description: Creates a new IProcessor object.

Returns: The newly created IProcessor instance, or NULL if the method failed. Use

 ISimpleLPR::lastError_get to obtain the error information.

Remarks: This method is multi-threaded. For this method to succeed, either the product

 must be within the evaluation period o a valid product key must be supplied using

 productKey_set. The returned IProcessor object must be de-allocated by calling

 its release method.

virtual bool productKey_set(const wchar_t *productKeyPath) throw () = 0;

Description: Sets the product key from a license file.

Parameters

 Input

 productKeyPath: Path to the product key file.

Returns: true if the method succeeded, false otherwise. In the later case use

 ISimpleLPR::lastError_get to obtain the error information.

 SimpleLPR 3.5 License Plate Recognition Toolkit 27 of 29

virtual bool productKey_set(const void *key, _SIZE_T keySize) throw () = 0;

Description: Sets the product key from a memory buffer.

Parameters

 Input

 key: Pointer to the memory buffer.

 keySize: keySize in bytes.

Returns: true if the method succeeded, false otherwise. In the later case use

 ISimpleLPR::lastError_get to obtain the error information.

virtual bool versionNumber_get(/*[out]*/VersionNumber &rVersion) throw () = 0;

Description: Gets the version number of SimpleLPR3_native.dll.

Parameters

 Output:

 rVersion:: The 4 element version number of SimpleLPR3_native.dll.

Returns: true if the method succeeded, false otherwise. In the later case use

 ISimpleLPR::lastError_get to obtain the error information.

 SimpleLPR 3.5 License Plate Recognition Toolkit 28 of 29

6 .NET Interface Reference

See the companion SimpleLPR.chm help file.

SimpleLPR.chm

	1 Introduction
	2 Supported Countries and Limitations
	3 Prerequisites, Installation and Deployment
	3.1 Prerequisites
	3.2 Deployment

	4 License Plate Recognition with SimpleLPR 3
	4.1 SimpleLPR 3 Instantiation
	Native C++ Applications
	.NET Applications

	4.2 Engine Configuration
	Native C++ Applications
	.NET Applications

	4.3 License Plate Recognition
	Native C++ Applications
	.NET Applications

	4.4 Considerations on Error Handling and Resource Management
	Native C++ Applications
	.NET Applications

	5 C++ Interface Reference
	5.1 Functions
	5.1.1 Setup

	5.2 Structures
	5.2.1 SIMPLELPR_Engine_Setup_Parms
	5.2.2 Point
	5.2.3 Rect
	5.2.4 Quad
	5.2.5 Element
	5.2.6 VersionNumber

	5.3 Interfaces
	5.3.1 IReferenceCounted
	5.3.2 IErrorInfo
	5.3.3 ICountryMatch
	5.3.4 ICandidate
	5.3.5 ICandidates
	5.3.6 IProcessor
	5.3.7 ISimpleLPR

	6 .NET Interface Reference

